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Abstract

Purpose – To consider simultaneous heat and mass transfer by mixed convection for a
non-Newtonian power-law fluid from a permeable vertical plate embedded in a fluid-saturated
porous medium in the presence of suction or injection and heat generation or absorption effects.

Design/methodology/approach – The problem is formulated in terms of non-similar equations.
These equations are solved numerically by an efficient implicit, iterative, finite-difference method.

Findings – It was found that as the buoyancy ratio was increased, both the local Nusselt and
Sherwood numbers increased in the whole range of free and mixed convection regime while they
remained constant for the forced-convection regime. However, they decreased and then increased
forming dips as the mixed-convection parameter was increased from the free-convection limit to the
forced-convection limit for both Newtonian and dilatant fluid situations.

Research limitations/implications – The problem is limited to slow flow of non-Newtonian
power-law fluids in porous media. Future research may consider inertia effects of porous media for
relatively higher velocity flows.

Practical implications – A very useful source of information for researchers on the subject of
non-Newtonian fluids in porous media.

Originality/value – This paper illustrates simultaneous heat and mass transfer in porous media for
power-law fluids with heat generation or absorption effects.
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Nomenclature
C ¼ dimensionless concentration,

C ¼ (c 2 c1)/(cw 2 c1)
c ¼ concentration at any point in the flow

field
cp ¼ specific heat at constant pressure
c1 ¼ concentration at the free stream
cw ¼ concentration at the wall
D ¼ mass diffusivity
d ¼ particle diameter of the porous medium

f ¼ dimensionless stream function f ¼

c= aeðPe
1=2
x þ Ra

1=2
x Þ

h i
g ¼ gravitational acceleration
h ¼ local convective heat transfer coefficient
hm ¼ local mass transfer coefficient
K ¼ modified permeability of the porous

medium
ke ¼ porous medium effective thermal

conductivity
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Le ¼ Lewis number, Le ¼ ae/D
N ¼ buoyancy ratio,

N ¼ bc(cw 2 c1)/[bT(Tw 2 T1)]
Nux ¼ local Nusselt number, Nux ¼ hx/ke

Pex ¼ local Peclet number, Pex ¼ U1x/ae

Qo ¼ heat generation or absorption
coefficient

Rax ¼ local Rayleigh number,
Rax ¼ x/ae[rgbTjTw 2 T1jK/m ]1/n

Shx ¼ local Sherwood number, Shx ¼ hmx/D
T ¼ temperature at any point
Tw ¼ wall temperature
T1 ¼ free stream temperature
u ¼ tangential or x-component of velocity
v ¼ normal or y-component of velocity
vo ¼ suction or injection velocity
U1 ¼ free stream velocity
x ¼ distance along the surface
y ¼ distance normal to the surface

Greek symbols

ae ¼ effective thermal diffusivity of the
porous medium

bc ¼ concentration expansion coefficient
bT ¼ thermal expansion coefficient
1 ¼ porosity of the porous medium
f ¼ dimensionless heat generation or

absorption parameter,f ¼ Qo=ðrcpvoÞ

h ¼ coordinate transformation in terms of x
and y, h ¼ yðPe

1=2
x þ Ra

1=2
x Þ=x

x ¼ mixed convection parameter,
x ¼ [1 þ (Rax/Pex)

1/2]21

c ¼ stream function
u ¼ dimensionless temperature,

u ¼ (T 2 T1)/(Tw 2 T1)
r ¼ fluid density
j ¼ transformed suction or injection

parameter,
j ¼ voxðPe

1=2
x þ Ra

1=2
x Þ21=ae

Introduction
Buoyancy-induced flows from vertical surfaces embedded in porous media have been
the subject of many investigations. This is due fact that these flows have many
engineering and geophysical applications such as geothermal reservoirs, drying of
porous solids, thermal insulation, enhanced oil recovery, groundwater pollution, and
underground energy transport. Cheng and Minkowycz (1977) have presented
similarity solutions for free thermal convection from a vertical plate in a
fluid-saturated porous medium. Ranganathan and Viskanta (1984) have considered
mixed convection boundary layer flow along a vertical surface in a porous medium.
Nakayama and Koyama (1987) have suggested similarity transformations for pure,
combined and forced convection in Darcian and non-Darcian porous media. Lai (1991)
has investigated coupled heat and mass transfer by mixed convection from an
isothermal vertical plate in a porous medium. Hsieh et al. (1993) have presented
non-similar solutions for combined convection in porous media. All of the above
references considered Newtonian fluids.

A number of industrially important fluids such as molten plastics, polymers, pulps,
foods and slurries and fossil fuels which may saturate underground beds display
non-Newtonian power-law fluid behavior. Non-Newtonian fluids exhibit a non-linear
relationship between shear stress and shear rate. An illustrative example of
non-Newtonian power-law fluid flow in porous medium is found in oil reservoir
engineering in connection with the production of heavy crude oils. This process
involves periodic injection of steam or placement of heat generation sources for the
purpose of increasing the crude oil temperature. The increase in crude oil temperature
reduces its viscosity and thus, enhances its mobility resulting in improved oil
production flow rates. Chen and Chen (1988) have presented similarity solutions for
free convection of non-Newtonian fluids over vertical surfaces in porous media. Mehta
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and Rao (1994a) have investigated buoyancy-induced flow of non-Newtonian
fluids over a non-isothermal horizontal plate embedded in a porous medium.
Also, Mehta and Rao (1994b) have analyzed buoyancy-induced flow of non-Newtonian
fluids in a porous medium past a vertical plate with non-uniform surface heat flux. In a
series of papers, Gorla and co-workers (Gorla et al., 1997a, b, 1998; Kumari et al., 1997;
Gorla and Kumari, 1998) have studied mixed convection in non-Newtonian fluids along
horizontal and vertical plates in porous media. Jumah and Mujumdar (2000) have
considered free convection heat and mass transfer of non-Newtonian power-law fluids
with yield stress from a vertical flat plate in saturated porous media.

In certain porous media applications such as those involving heat removal from
nuclear fuel debris, underground disposal of radioactive waste material, storage of
food stuffs, and exothermic chemical reactions and dissociating fluids in
packed-bed reactors, the working fluid heat generation or absorption effects are
important. Modeling of such situations involves the addition of a heat source or
sink term in the energy equation. This term has been assumed to be either a
constant (Acharya and Goldstein, 1985) or temperature-dependent (Vajravelu and
Nayfeh, 1992).

The effects of fluid wall suction or injection the flow and heat transfer
characteristics along vertical semi-infinite plates have been investigated by several
authors (Cheng, 1977; Lai and Kulacki, 1990a, b; Minkowycz et al., 1985; Hooper et al.,
1993). Some of these studies have reported similarity solutions (Cheng, 1977; Lai and
Kulacki, 1990a, b) while others have obtained non-similar solutions (Minkowycz et al.,
1985; Hooper et al., 1993). Lai and Kulacki (1990a, b) have reported similarity solutions
for mixed convection flow over horizontal and inclined plates embedded in
fluid-saturated porous media in the presence of surface mass flux. On the other
hand, Minkowycz et al. (1985) have discussed the effect of surface mass transfer on
buoyancy-induced Darcian flow adjacent to a horizontal surface using non-similarity
solutions. Also, Hooper et al. (1993) have considered the problem of non-similar mixed
convection flow along an isothermal vertical plate in porous media with uniform
surface suction or injection and introduced a single parameter for the entire regime of
free-forced-mixed convection. Their non-similar variable represented the effect of
suction or injection at the wall.

The objective of this paper is consider simultaneous heat and mass transfer by
mixed convection for a non-Newtonian power-law fluid from a permeable vertical plate
embedded in a fluid-saturated porous medium in the presence of suction or injection
and heat generation or absorption effects. This will be done for constant temperature
and concentration wall conditions in the entire range of free-forced-mixed convection
regime.

Problem formulation
Consider steady mixed convection flow of a non-Newtonian power-law fluid over a
permeable semi-infinite vertical surface embedded in a porous medium in the presence
of temperature difference-dependent heat generation or absorption. The power-law
fluid model of Ostwald-de-Waele which is adequate for many non-Newtonian fluids is
considered herein. Uniform suction or injection with speed vo is imposed at the surface
boundary. The porous medium is assumed to be uniform, isotropic and in thermal
equilibrium with the fluid. All fluid properties are assumed constant. Under the
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Boussinesq and boundary-layer approximations, the governing equations for this
problem can be written as:

›u

›x
þ

›v

›y
¼ 0 ð1Þ

un ¼ Un
1 þ

K

m
rg½bTðT 2 T1Þ þ bcðc2 c1Þ� ð2Þ

u
›T

›x
þ v

›T

›y
¼ ae

›2T

›y 2
þ

Qo

rcp
ðT 2 T1Þ ð3Þ

u
›c

›x
þ v

›c

›y
¼ D

›2c

›y 2
ð4Þ

where x and y denote the vertical and horizontal directions, respectively. u, v,T and c are
the x- and y-components of velocity, temperature and concentration, respectively. r,m, n,
cp and D are the fluid density, consistency index for viscosity, power-law fluid viscosity
index, specific heat at constant pressure, and mass diffusion coefficient, respectively.
K and ae are the porous medium permeability and effective thermal diffusivity,
respectively. bT, bc, Qo, U1, T1 and c1 are the thermal expansion coefficient,
concentration expansion coefficient, heat generation (.0) or absorption (,0) coefficient
and the free stream velocity, temperature and concentration, respectively.

The modified permeability of the porous medium K for flows of non-Newtonian
power-law fluids is given by:

K ¼
1

2Ct

n1

3nþ 1

� �n
50k

*

31

 !ðnþ1Þ=2

ð5Þ

where

k
*
¼

1 3d 2

150ð1 2 1Þ2
ð6Þ

Ct ¼

25

12

2

3

8n

9nþ 3

� �
10n2 3

6nþ 1

� �
75

16

� �3ð10n23Þ=ð10nþ11Þ

8>>>><
>>>>:

ð7Þ

(Christopher and Middleman, 1965; Dharmadhikari and Kale, 1985) where 1 and d is
the porosity and the particle diameter of the porous medium.

The boundary conditions suggested by the physics of the problem are:

vðx; 0Þ ¼ vo;Tðx; 0Þ ¼ Tw; cðx; 0Þ ¼ cw

uðx;1Þ ¼ U1;Tðx;1Þ ¼ T1; cðx;1Þ ¼ c1

ð8Þ

where Tw and cw are the wall temperature and concentration, respectively.
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It is convenient to transform the governing equations into a non-similar
dimensionless form which can be suitable for solution as an initial-value problem.
This can be done by introducing the stream function such that:

u ¼
›c

›y
; v ¼ 2

›c

›x
ð9Þ

and using

h ¼
y

x
Pe1=2

x þ Ra1=2
x

� �
; j ¼

vox

ae
Pe1=2

x þ Ra1=2
x

� �21

ð10Þ

c ¼ ae Pe1=2
x þ Ra1=2

x

� �
f ðj;hÞ; uðj;hÞ ¼

T 2 T1

Tw 2 T1

; Cðj;hÞ ¼
c2 c1

cw 2 c1
ð11Þ

where Pex ¼ U1x/ae and Rax ¼ x/ae[rgbTjTw 2 T1jK/m ]1/n are the local Peclet and
modified Rayleigh numbers, respectively.

Substituting equations (9) through (11) into equations (1) through (5) produces:

nf 0n21f 00 ¼ ð1 2 xÞ2nðu0 þ NC 0Þ ð12Þ

u00 þ
1

2
fu0 þ j 2fu ¼

1

2
j f 0

›u

›j
2 u0

›f

›j

� �
ð13Þ

Le21C 00 þ
1

2
fC 0 ¼

1

2
j f 0

›C

›j
2 C 0 ›f

›j

� �
ð14Þ

f ðj; 0Þ þ j
›f

›j
ðj; 0Þ ¼ 22j; uðj; 0Þ ¼ 1;Cðj; 0Þ ¼ 1

f ðj;1Þ ¼ x2; uðj;1Þ ¼ 0;Cðj;1Þ ¼ 0

ð15Þ

where

Le ¼
ae

D
; N ¼

bcðcw 2 c1Þ

bTðTw 2 T1Þ
; f ¼

Qo

rcpvo
; x ¼ 1 þ

Rax

Pex

� �1=2
" #21

ð16Þ

are the Lewis number, concentration to thermal buoyancy ratio, dimensionless heat
generation (.0) or absorption (,0) coefficient, and the mixed convection parameter,
respectively. It should be noted that x ¼ 0 (Pex ¼ 0) corresponds to pure free
convection while x ¼ 1 (Rax ¼ 0) corresponds to pure forced convection. The entire
regime of mixed convection corresponds to values of x between 0 and 1.

Of special significance for this problem are the local Nusselt and Sherwood
numbers. These physical quantities can be defined as:

Nux ¼
hx

ke
¼ 2 Pe1=2

x þ Ra1=2
x

� �
u0ðj; 0Þ; h ¼

qw

Tw 2 T1

; qw ¼ 2ke
›T

›y

� �
y¼0

ð17Þ
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Shx ¼
hmx

D
¼ 2 Pe1=2

x þ Ra1=2
x

� �
C 0ðj; 0Þ; hm ¼

mw

cw 2 c1
; mw ¼ 2D

›c

›y

� �
y¼0

ð18Þ

where ke is the porous medium effective thermal conductivity and qw and mw are,
respectively, the wall heat transfer and wall mass transfer.

Numerical method and validation
Equations (15) through (18) represent an initial-value problem with j playing the role of
time. This non-linear problem cannot be solved in closed form and, therefore, a
numerical solution is necessary to describe the physics of the problem. The implicit,
tri-diagonal finite-difference method similar to that discussed by Blottner (1970) has
proven to be adequate and sufficiently accurate for the solution of this kind of
problems. Therefore, it is adopted in the present work.

All first-order derivatives with respect to j are replaced by two-point
backward-difference formulae when marching in the positive j direction and by
two-point forward-difference formulae when marching in the negative j direction.
Then, all second-order differential equations in h are discretized using three-point
central difference quotients. This discretization process produces a tri-diagonal set of
algebraic equations at each line of constant j which is readily solved by the well known
Thomas algorithm (Blottner, 1970). During the solution, iteration is employed to deal
with the non-linearities of the governing differential equations. The problem is solved
line by line starting with line j ¼ 0 where similarity equations are solved to obtain the
initial profiles of velocity, temperature and concentration and marching forward
(or backward) in j until the desired line of constant j is reached. Variable step sizes
in the h direction with Dh1 ¼ 0.001 and a growth factor G ¼ 1.04 such that
Dhn ¼ GDhn21 and constant step sizes in the j direction with Dj ¼ 0.01 are employed.
These step sizes are arrived at after many numerical experimentations performed to
assess grid independence. The convergence criterion employed in the present work is
based on the difference between the current and the previous iterations. When this
difference reached 1026 for all points in the h directions, the solution was assumed
converged and the iteration process was terminated.

Tables I and II present a comparison of 2u0(j, 0) at selected values of j and x
between the results of the present work and those reported earlier by Hooper et al.
(1993) for n ¼ 1, N ¼ 0 and f ¼ 0. It is clear from this comparison that a good

x j ¼ 22.0 j ¼ 21.5 j ¼ 21.0 j ¼ 20.5 j ¼ 0.0 j ¼ 0.5 j ¼ 1.0 j ¼ 1.5 j ¼ 2.0

0.0 1.9989 1.5135 1.0726 0.7121 0.4440 0.2601 0.1424 0.0725 0.0341
0.1 1.9979 1.5060 1.0509 0.6770 0.4037 0.2230 0.1134 0.0526 0.0221
0.2 1.9976 1.5027 1.0383 0.6526 0.3734 0.1944 0.0914 0.0384 0.0143
0.3 1.9975 1.5020 1.0340 0.6406 0.3552 0.1757 0.0769 0.0294 0.0097
0.4 1.9976 1.5635 1.0373 0.6415 0.3507 0.1681 0.0700 0.0250 0.0075
0.5 1.9982 1.5050 1.0478 0.6545 0.3605 0.1725 0.0710 0.0248 0.0073
0.6 2.0006 1.5165 1.0653 0.6783 0.3834 0.1890 0.0803 0.0240 0.0088
0.7 2.0058 1.5298 1.0895 0.7112 0.4175 0.2167 0.0982 0.0385 0.0129
0.8 2.0148 1.5485 1.1202 0.7515 0.4604 0.2539 0.1247 0.0541 0.0206
0.9 2.0283 1.5728 1.1568 0.7978 0.5100 0.2986 0.1590 0.0764 0.0329
1.0 2.0497 1.6025 1.1990 0.8488 0.5643 0.3483 0.1998 0.1049 0.0504

Table I.
Values of 2u0(j, 0) at
selected values of j and x
for n ¼ 1, N ¼ 0 and
f ¼ 0 (present work)
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agreement between the results exists. This lends confidence in the correctness of the
numerical results to be reported subsequently. It should be noted that in Table II,
the value of 2u0(j, 0) at j ¼ 22 and x ¼ 1 seems to be in error or a typo as this value
cannot be 1.0502.

Results and discussion
Figures 1-3 show representative velocity, temperature and concentration ( f0, u and C)
profiles for different values of the transformed suction or injection parameter j and two
distinct values of the buoyancy ratio N ¼ 0, 3 and power-law fluid index n ¼ 0.5
(shear thinning or pseudo-plastic fluid), respectively. For a fixed value of x ¼ 0.5
(Rax/Pex ¼ 1) increases in the value of N has the tendency to increase the buoyancy

x j ¼ 2 2.0 j ¼ 21.5 j ¼ 21.0 j ¼ 20.5 j ¼ 0 j ¼ 0.5 j ¼ 1.0 j ¼ 1.5 j ¼ 2.0

0.0 2.0015 1.5148 1.0725 0.7114 0.4437 0.2593 0.1417 0.0717 0.0335
0.1 2.0005 1.5076 1.0510 0.6763 0.4035 0.2223 0.1127 0.0519 0.0216
0.2 2.0003 1.5046 1.0386 0.6520 0.3732 0.1937 0.0907 0.0378 0.0139
0.3 2.0003 1.5042 1.0347 0.6401 0.3550 0.1750 0.0762 0.0288 0.0084
0.4 2.0005 1.5060 1.0384 0.6411 0.3504 0.1674 0.0693 0.0244 0.0072
0.5 2.0016 1.5106 1.0491 0.6543 0.3603 0.1719 0.0704 0.0242 0.0069
0.6 2.0042 1.5192 1.0666 0.6782 0.3832 0.1884 0.0797 0.0284 0.0085
0.7 2.0095 1.5324 1.0908 0.7111 0.4196 0.2036 0.0999 0.0339 0.0134
0.8 2.0185 1.5510 1.1214 0.7515 0.4602 0.2534 0.1242 0.0535 0.0201
0.9 2.0319 1.5751 1.1579 0.7978 0.5097 0.2982 0.1586 0.0758 0.0324
1.0 1.0502 1.6047 1.1995 0.8488 0.5642 0.3488 0.1996 0.1047 0.0502

Source: Hooper et al. (1993)

Table II.
Values of 2u0(j, 0) at

selected values of j and x
for n ¼ 1, N ¼ 0 and

f ¼ 0

Figure 1.
Velocity profiles for
different values of j

(n ¼ 0.5)
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effect causing more induced flow along the plate in the vertical direction. This
enhancement in the flow velocity is achieved at the expense of reduced fluid
temperature and concentration as well as reduced thermal and concentration boundary
layers as seen from Figures 2 and 3. Also, as j increases, all of the velocity, temperature
and concentration along with their boundary layers are predicted to increase.

Figure 2.
Temperature profiles for
different values of j
(n ¼ 0.5)

0 2 4 6 8 10
0.00

0.25

0.50θ
0.75

1.00

N=3

N=0

Le=5.0

n=0.5
=0.0

χ=0.5

ξ=–2, –1, 0, 1, 2

η

Figure 3.
Concentration profiles for
different values of j
(n ¼ 0.5)
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Similar results as those shown in Figures 1-3 are shown in Figures 4-6 but for
n ¼ 1.5 (shear thickening or dilatant fluid). The effects of increasing N and j are the
same as discussed above for n ¼ 0.5. Comparison of Figures 1-3 with Figures 4-6
shows that as n increases, the fluid velocity decreases while the temperature and

Figure 4.
Velocity profiles for
different values of j

(n ¼ 1.5)
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Figure 5.
Temperature profiles for

different values of j
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concentration and their boundary layers increase. Furthermore, inspection of
Figures 1-6 shows that while the changes in the profiles corresponding to j ¼ 0,
j ¼ 1 and j ¼ 2 as N increases are significant, they are insignificant for the profiles
corresponding to j ¼ 21 and j ¼ 22.

Figures 7-12 show the effects of the buoyancy ratio N and the transformed suction
or injection parameter j in the range of the mixed convection parameter 0 # x # 1 on

Figure 6.
Concentration profiles for
different values of j
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Figure 7.
Effects of N and x on local
Nusselt number for
n ¼ 0.5 and different j
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the local Nusselt number ½Nux=ðPe
1=2
x þ Ra

1=2
x Þ ¼ 2u0ðj; 0Þ� and the local Sherwood

number ½Shx=ðPe
1=2
x þ Ra

1=2
x Þ ¼ 2C 0ðj; 0Þ� for power-law fluid viscosity indices

n ¼ 0.5 (shear-thinning or pseudo-plastic fluid), n ¼ 1.0 (Newtonian fluid) and n ¼ 1.5
(shear-thickening or dilatant fluid), respectively. As mentioned before, in general,

Figure 8.
Effects of N and x on local

Sherwood number for
n ¼ 0.5 and different j

values

–
C
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Effects of N and x on local

Nusselt number for
n ¼ 1.0 and different j
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Figure 10.
Effects of N and x on local
Sherwood number for
n ¼ 1.0 and different j
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Figure 11.
Effects of N and x on local
Nusselt number for
n ¼ 1.5 and different j
values
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increases in the value of N have the tendency to increase the buoyancy effect causing
more induced flow along the surface in the vertical direction. However, both the
temperature and concentration along with their boundary layers decrease. This causes
the negative wall slope of the temperature and concentration profiles to increase
yielding enhancements in both the local Nusselt and Sherwood numbers. Also, it is
noted that as the transformed suction or injection parameter j increases for fixed
values of N . 0 and x – 1, the temperature and concentration as well as their
boundary layers increase. This produces higher flow velocities due to increases in the
buoyancy effects. As a result of increasing the value of j, the local Nusselt and
Sherwood numbers increase. From the definition of x, it is seen that increases in the
value of the parameter Rax/Pex causes the mixed convection parameter x to decrease.
Thus, small values of Rax/Pex correspond to values of x close to unity which indicate
almost pure forced convection regime. On the other hand, high values of Rax/Pex
correspond to values of x close to zero which indicate almost pure free convection
regime. Furthermore, moderate values of Rax/Pex represent values of x between 0 and 1
which correspond to the mixed convection regime. For the forced convection limit
(x ¼ 1) it is clear from equation (15) that the velocity in the boundary layer f0 is uniform
irregardless of the value of n. However, for smaller values of x (higher values of
Rax/Pex) at a fixed value of N and n ¼ 1.0, the buoyancy effect increases. As this
occurs, the fluid velocity close to the wall increases for values of x # 0.5 due to the
buoyancy effect which becomes maximum for x ¼ 0 (free convection limit). This
decrease and increase in the fluid velocity f0 as x is decreased from unity to zero is
accompanied by a respective increase and a decrease in the fluid temperature and
concentration. As a result, the local Nusselt and Sherwood numbers tend to decrease
and then increase as x is increased from 0 to unity forming slight dips close to x ¼ 0.4
for n ¼ 1 (Figures 9 and 10) and x ¼ 0.5 for n ¼ 1.5 (Figures 11 and 12) for almost all

Figure 12.
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values of j and N considered. However, for n ¼ 0.5 and N # 1.0, the local Nusselt and
Sherwood numbers are predicted to increase as x is increased from 0 to unity. On the
other hand, for N ¼ 3, the added buoyancy due to concentration gradient causes a
different trend in which the local Nusselt and Sherwood numbers increase with
increasing values of x. Furthermore, by comparison of Figures 7-12, one can easily
conclude that the local Nusselt and Sherwood numbers decrease as the power-law fluid
index n increases. It is also observed that while the local Nusselt and Sherwood
numbers change in the whole range of free and mixed convection regime, they remain
constant for the forced-convection regime. This is obvious since for x ¼ 1 and fixed
values of Le and f, the equations are the same and do not depend on n and N. All of the
above trends are clearly shown in Figures 7-12.

Figure 13 shows the effects of the heat generation or absorption coefficient f on the
temperature profiles for different values of j. The presence of a heat generation source
in the flow represented by positive values of f enhances the thermal state of the fluid
causing its temperature to increase. On the contrary, the presence of a heat absorption
sink in the flow represented by negative values of f reduces the fluid temperature.
These behaviors are clearly seen from Figure 13. Also, it should be noted that for the
case of heat generation (f $ 0.5 and j $ 1) the maximum fluid temperature does not
occur at the wall but rather in the fluid layer adjacent to the wall. The curve associated
with f ¼ 0.5 and j ¼ 2 is not plotted because the peak value lies outside the scale of
Figure 13.

The effect of the heat generation or absorption coefficient f on the local Nusselt
number ½Nux=ðPe

1=2
x þ Ra

1=2
x Þ ¼ 2u0ðj; 0Þ� for different values of n (0.5, 1.0, 1.5) in the

range 22 # j # 2 is shown in Figure 14. As mentioned above, the presence of a heat
generation effects in the flow increases the fluid temperature to increase. This, in turn,
increases the thermal buoyancy effect which produces higher induced flow. On the

Figure 13.
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contrary, the presence of a heat absorption effects in the flow reduces the fluid
temperature which, in turn, decreases the induced flow due to thermal buoyancy
effects. Thus, the wall slope of the temperature profile increases as f increases causing
the local Nusselt number which is directly proportional to 2u0(j, 0) to decrease for all
values of j except j ¼ 0 since f does not appear in equation (16) at j ¼ 0. As seen from
Figure 13, for the heat generation case (f $ 0.5 and j $ 1), the maximum fluid
temperature does not occur at the wall but rather in the fluid layer adjacent to the
surface for some values of j . 0. This causes the slope of the temperature profile at the
wall u0(j, 0) to become positive and thus, the local Nusselt number is negative. All these
behaviors are clear from Figure 14. Also, it is observed that as n increases, the local
Nusselt number decreases and that the amount of reduction depends on the values of j
and f.

Figure 15 shows the effect of increasing the Lewis number Le on the concentration
profile for different values of j. In general, increases in the value of the Lewis number
result in decreasing the concentration distribution within the boundary layer.
However, it is observed that for values of j . 0 as Le increases, the concentration level
close to the surface increases while its distribution within the boundary layer away
from the surface decreases. This behavior is shown in Figure 15.

Figure 16 shows the influence of the Lewis number Le on the local Sherwood
number in the whole mixed convection range 0 # x # 1 for values of j . 0. Increasing
the values of the Lewis number in the range 0 # j # 0.2 results in increasing the
concentration level close to the wall while decreasing its distribution within the
boundary layer away from the surface. This causes the local Sherwood number to
increase. However, in the range j . 0.2, increasing Le reduces the concentration
everywhere in the boundary layer causing the local Sherwood number to decrease.
These behaviors are shown clearly in Figure 16.

Figure 14.
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Conclusions
This study considered heat and mass transfer by mixed convection from a vertical
permeable surface embedded in a porous medium for a non-Newtonian power-law fluid
in the presence of temperature-dependent heat generation or absorption effects.

Figure 16.
Effects of Le and x on local
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n ¼ 0.5 and different j
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A single parameter for the entire range of free-forced-mixed convection regime was
employed. The obtained non-similar differential equations were solved numerically by
an efficient implicit finite-difference method. The results focused on the effects of the
buoyancy ratio, power-law fluid index, mixed convection parameter, suction or
injection parameter, heat generation or absorption parameter, and the Lewis number
on the local Nusselt and Sherwood numbers. It was found that as the buoyancy ratio
was increased, both the local Nusselt and Sherwood numbers increased in the whole
range of free and mixed convection regime while they remained constant for the
forced-convection regime. However, they decreased and then increased forming dips as
the mixed-convection parameter was increased from the free-convection limit to the
forced-convection limit for both Newtonian and dilatant fluid situations. On the other
hand, in general, for pseudo-plastic fluids the local Nusselt and Sherwood numbers
decreased with increasing values of the mixed-convection parameter for smaller values
of the buoyancy ratio (less than or equal unity) while they increase with it for larger
values of the buoyancy ratio. Furthermore, it was concluded that the local Nusselt and
Sherwood numbers decreased as the power-law fluid index was increased. The effect of
heat generation was found to decrease the local Nusselt number while the opposite was
predicted for heat absorption conditions. In general, the local Sherwood number was
increased with increases in the Lewis number.
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